February 6, 2018

TO: Hector J. Bordas Design Division

Attention Nicole Mi

FROM: Greg Kelley Gall July Geotechnical and Materials Engineering Division

GEOTECHNICAL INVESTIGATION GATES CANYON PARK REGIONAL LOW IMPACT DEVELOPMENT PROJECT PROJECT ID DES002966 (PROJECT NO. F21816I02)

In response to the request from Project Management Division II (PMD II), Geotechnical and Materials Engineering Division (GMED) conducted a supplemental geotechnical investigation for the proposed cistern and pipelines for the subject project.

SUBSURFACE INVESTIGATION

Six exploratory borings were drilled on November 8 and 9, 2017, under the supervision of GMED personnel to evaluate the site and determine subsurface conditions. Borings were drilled by Cascade Drilling and Testing, Inc. using an 8-inch diameter hollow stem auger to a maximum depth of 30 feet below grade. The approximate boring locations are shown on Figure 1 and the Log of Borings is provided in Appendix A.

LABORATORY TESTING

Bulk and relatively undisturbed samples were collected from the borings to determine soil properties and confirm classifications made in the field. Testing was performed by the GMED Materials Laboratory. A summary of the results is provided in Appendix B.

FINDINGS

Subsurface Conditions

- The soils encountered during exploration for the cistern consisted of clay, clayey sand, and silty sand in loose to medium dense and hard to very stiff condition.
- The soils encountered during exploration for the control house consisted of clayey shale bedrock in moderately hard to hard condition.

Groundwater

• No groundwater was encountered in any of the borings.

RECOMMENDATIONS

Foundation Design

It is our understanding that Design Division (DES) proposes to construct an above ground control house and an underground concrete cistern. The control house is approximately 25 feet by 25 feet, proposed with either a retaining wall to support the slope behind the structure, or with the structure's walls designed as retaining walls. The underground cistern is approximately 120 feet by 160 feet by 12 feet at a depth of 20 feet below ground surface (bgs).

Based on discussion with the designers, the proposed structures will be designed using the Working Stress Design method. All values recommended below may be considered allowable.

Control House

Removal and replacement with structural backfill is recommended at a minimum of 2 feet below the bottom of the foundation of the control house. Structural backfill is subject to the Standard Specifications for Public Works Construction (SSPWC) Section 217-3 requirements. The following geotechnical design parameters may be used to design foundations for the control house:

Geotechnical Design Parameters for Control House									
Soil Type	Shale Bedrock (Tush)								
Soil Unit Weight	120 pcf								
Active Pressure EFP	50 pcf								
At-Rest EFP	75 pcf								
Passive Pressure EFP (unfactored)	400 pcf								
Seismic Active EFP	15 pcf ^A								
Seismic At-Rest EFP	25 pcf ^A								
Peak Ground Acceleration (PGA)	0.617 g								
Bearing Capacity	3,000 psf ^B								

Notes:

^A Seismic Equivalent Fluid Pressure (EFP) increments should be added to retaining walls with retained height greater than 6 feet. EFP is applied as an upright triangular pressure distribution.

^B Bearing capacity only valid for control house foundation with minimum dimensions 25 feet by 25 feet.

Underground Cistern

Based on laboratory test results, the underground cistern should be designed for medium expansive soils. The following geotechnical design parameters may be used to design the underground cistern foundation for:

Geotechnical Design Parameters for Cistern location									
Soil Type	Clay (CL)								
Soil Unit Weight	110 pcf								
Active Pressure EFP	40 pcf								
At-Rest EFP	64 pcf								
Passive Pressure EFP (unfactored)	430 pcf								
Seismic Active EFP	15 pcf ^A								
Seismic At-Rest EFP	25 pcf ^A								
Peak Ground Acceleration (PGA)	0.617 g								

Notes:

^A Seismic Equivalent Fluid Pressure (EFP) increments should be added to retaining walls with retained height greater than 6 feet. EFP is applied as an upright triangular pressure distribution.

Trenching and Excavation

- Excavations greater than 5 feet in depth shall either be shored or sloped back at a gradient no steeper than 1.5:1 (horizontal:vertical).
- The soils encountered in the borings may be classified Type B as defined in the California Code of Regulation Title 8, Division 1, Chapter 4, Subchapter 4, Article 6, Appendix A.
- Excavated material on-site is not suitable for use as bedding subject to the requirements of SSPWC Sections 217.1 and 217.2.
- Excavated material on-site is suitable for use as backfill subject to the requirements of SSPWC Sections 217.1 and 217.2.
- All backfill shall be compacted to a minimum relative compaction of 90 percent of the maximum dry density per ASTM D1557.
- Amendments to the specifications are provided in Appendix D and shall be included in the Special Provisions of the Project Specifications.

General

- Log of Borings and boring locations shall be included with the project plans.
- Preliminary and final design plans and specifications shall be submitted to GMED for review, comment, and approval to verify that our recommendations have been properly incorporated.

CONSTRUCTION CONSIDERATIONS

- Significant excavation depths are proposed for the cistern. GMED should be involved during construction to verify adequate quality control is performed for temporary excavations.
- Removal and replacement is recommended for the control house. GMED should be involved during construction to verify adequate compaction control is performed.
- GMED should be notified immediately to verify any change of conditions observed during construction.

SIGNATURES

If you have any questions concerning this report, please contact Kevin Phan or Yonah Halpern at (626) 458-4925.

Prepared by:

ein

Kevin Phan Senior Civil Engineering Assistant

	AD PROFESSION
	S SPENDALL
~	* 21/12
	Yorlah Halpern
nt	Associate Civil Engineer

Reviewed by:

KP:YH:mc GME-4p:\gmepub\secretarial\soilsinv\reports\gates canyon park lid project.docx

FIGURE

Figure 1 – Boring Location Map

APPENDICES

- Appendix A Log of Borings
- Appendix B Summary of Laboratory Results

Appendix C – Seismic Design Parameters

Appendix D - Amendments to Specification

FIGURE

APPENDIX A

Log of Borings

BORING NUMBER B-1a

CLIE	NT						PROJECT NAME Gates Canyon Park Addendum				
PRO.	JECT NUM	IBER							Calabasas		
Dates	(s) 11/9/	/2017	- 11/9	9/2017		oring ocation		_ogged ∃v	Kevin Phan	Checked	
Drillin	g Case	cade			Di	rill Bit 8 inches	Drilled 30				
Drilling		85 Ho	llowstom		B	oring 8 inches		Depth to		Inclination/	
Metho Drill R		. 05 110	nowstern		Di	iameter 6 menes		Groundwater Sample	r	Bearing (°)	
Туре					De	escription		Type(s)			
Notes Comn	/ nents										
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	Asphalt and	2000	MATER	IAL DESCRIPTIO	N	
							2036				
			-		MMM	1.5		int h			
z –	-					Lean Clay wi	th gravel, stiff, mo	ist, brown			
	MC R1	100	3-6-10 (16)								
	мс	100	8-9-12								
5	R2	100	(21)								
	-			CL- ML							
15											
	МС	100	29-24-27	·		Rock in sam	bler				
	R3		(51)								
<u>-</u> 	-										
z – –	4										
20	L										
- 0	мс	100	8-10-14								
<u>5</u>			(24)								
ž -	-										
ă 											
	1										
<u>š</u> 25											
								(Cor	ntinued Next Page)		

BORING NUMBER B-1a

PAGE 2 OF 2

PROJECT NUMBER

PROJECT NAME Gates Canyon Park Addendum
PROJECT LOCATION Calabasas

BORING NUMBER B-2a

PAGE 1 OF 1

CLIEN									PROJECT NAME Gates Canyon Park Addendum				
PROJ	ECT NUN	IBER					P	PROJECT L	OCATION	Calabasas			
Dates(Drilled	^(S) 11/8/	2017	- 11/8	8/2017	Bo Lo	ring cation			Logged By	Kevin Phan	Checke By	ed	
Drilling	ctor Case	ade			Dr	ill Bit	8 inches		Approx. Sur	rf. t)	Drilled	(ft) 20	
Drilling		85 Ho	llowstem		Bo	ring	8 inches		Depth to	<i>(</i>)	Inclinat	tion/	
Drill Ri	a ig				Ha	ameter Immer			Groundwate Sample	er	Bearing	<u>] ([*])</u>	
Type Notes/	- '				De	escriptio	n		Type(s)				
Comm	ients												
o DEPTH (ft)	DEPTH (ff) SAMPLE TYPE NUMBER RECOVERY % BLOW COUNTS (N VALUE) U.S.C.S.						MATERIAL DESCRIPTION						
			-		<u>71</u> 7	1.0							
 5				SC- SM		5.0	Clayey Sand, loo	ose, moist, br	own, with gra	avel up to 3-inch dia	imeter		
	MC	100	8-20-42				Bedrock, shale, c	clayey, weath	ered, moder	rately hard moist, da	ark brown		
	MC R2	100	9-12-18 (30)	CH			@10' Angular roc	ck fragments	in sampler,	harder drilling			
20	MC R3	100	13-23-46 (69)				@ 15' clayey and	d sandy, hard	, some rock	fragments in sampl	er		
1	MC	100	7-9-14										
			(23)			21.5							

LACDPW GMED BORING LOG - BASIC

BORING NUMBER B-3a

BORING NUMBER B-4a

	CLIENT								PROJECT NAME Gates Canyon Park Addendum				
	PROJ		IBER						PROJECT LOCATION Calabasas				
	Dates(Drilled	^{s)} 11/9/	2017	- 11/9	9/201	7 ^B	oring			Logged By	Kevin Phan	Checked	
	Drilling	ctor Case	ade				Drill Bit	8 inches		Approx. Surf		Drilled 10	
	Drilling	. CME	85 Ho	llowstem		B	loring	8 inches		Depth to		Inclination/	
	Drill Ri	g					lameter			Sample	·		
	Type Notes/						escription)	n		Type(s)			
	Comm	ents											
	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG				MATER	IAL DESCRIPTION		
PJ								Clay, very stiff,	moist, orange	-brown, some	gravel		
MENT.GI													
SUPPLEI	5												
PARK (R1	100	8-10-14 (24)									
ANYON													
BATES 0													
IONS/C	10	R2	100	12-17-32	SC-		<u>/10.0</u>	Silty clay, hard	, moist, orange	e-brown, rock	n sampler, some grave	1	
TIGAT	-		100	(49)	SM	///	211.5						
NVES.													
OILS I													
PUB/S													
GMEF													
JBLIC													
JPWPI													
PW01													
:34 - \\													
/18 10													
T - 2/5													
JS.GD													
STD L													
GINT													
ASIC -													
G-B													
NG LC													
BORI													
GMED													
DPW (
LACI													

BORING NUMBER B-5a

									PROJECT NAME Gates Canyon Park Addendum				
									PROJECT LOCATION Calabasas				
	Dates(Drilled	^(S) 11	9/2017	- 11/9	/2017	, Bo	oring ocation			Logged By	Kevin Phan	Checl By	ked
	Drilling Contra	actor Ca	scade			Dı Si	ill Bit ze	8 inches		Approx. Sur Elevation (f	f. t)	Drilleo Depth	d 10 10
	Drilling Method CME 85 Hollowstem						oring ameter	8 inches		Depth to Groundwate	er	Inclina	ation/ ng (°)
	Drill Ri	ig				Ha	ammer	n		Sample	-	1	3()
	Notes/	/					5501191101			1,900(0)			
ł	Comm	ш	%										
	o DEPTH (ft)	SAMPLE TYP NUMBER	RECOVERY 9	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG				MATE	RIAL DESCRIPTIO	N	
								Clay, very st	tiff, moist, browr	n, some silt an	d gravel		
r.gpJ													
MEN													
UPPL	5												
ARK 0		MC R1	100	10-14-20									
YONF													
S CAN													
GATE	 10						10.0						
TIONS	10	MC P2	100	8-17-18		//////	10.0						
STIGA	Į	N2		(55)	-								
INVE													
SOILS													
EPUB													
IC/GM													
PUBLI													
01\PW													
- \\PW													
10:34													
2/5/18													
GDT -													
D US.													
INT SI													
0-01													
3 - BAS													
GLOG													
30RIN													
MED B													
PW G													
LACD													

BORING NUMBER B-6a

PAGE 1 OF 1

							PROJECT NAME Gates Canyon Park Addendum				
PR	OJECT NUM	/ BER					PROJECT L	OCATION	Calabasas		
Dat Drill Drill	es(s) led 11/8/ ling Case	2017 cade	- 11/8	/2017	Boring Location Drill Bit Size	8 inches		Logged By Approx. Sur Elevation (ff	Kevin Phan	Checked By Drilled Depth (ft) 10	
Drilling Method CME 85 Hollowstem Boring Diameter 8 inche								Depth to Groundwate	er	Inclination/ Bearing (°)	
	i Rig ie				Descript	ion		Sample Type(s)			
Not Cor	es/ nments										
O DEPTH	AND MATERIAL ETYPE RECOVERY % RECOVERY % WUMBER NUMA NUMBER NUMBER NUMA NUMBER NUMA NUMBER NUMA NUMBER NUMA NUMBER NUMA NUMBER NUMA NUMBER NUMA NUMBER NUMA NUMA NUMBER NUMA NUMA NUMBER NUMA NUMA NUMA NUMA NUMA NUMA NUMA NUMA										
				SM	5.0	Silty sand, loose	e, moist, brow	n mottled wit	h orange, with gravel		
	- MC R1	100	11-12-14 (26)	-		Clay, very stiff, ı	moist, brown r	nottled with o	orange		
	-			CL	10.0						
	MC R2	100	21-23-34 (57)	SM	11.5	Silty sand, very	dense, moist,	red brown m	nottled with orange, ro	ock in lower sampler	

RK SLIPPI EMENT GP.I 2 NOVINO LACDPW GMED BORING LOG - BASIC - GINT STD US.GDT - 2/5/18 10:34 - \\PW01\PWPUBLIC(GMEPUB\SOILS INVESTIGATIONS)G

APPENDIX B

Summary of Laboratory Results

SUMMARY OF LABORATORY TEST RESULTS

Geotechnical Laboratory

PROJECT NAME: Gates Cyn TECHNICIAN: GP, EH PCA: F21816i02

MOISTURE AND DRY DENSITY DIRECT SHEAR UNIFIED SOIL CLASSIFICATION **BORING**/ DEPTH SAMPLE m.c._{field} #200 Φ ult Min. R ATTERBERG LIMITS #4 \mathbf{c}_{ult} Φ maxi. γ field m.c._{optimum} C maxi. V max. (ft) Class. bН % Pass pcf % % Degree Degree psf % Pass pcf psf B - S LL ΡI (K ol SM 47 17 66.6 32.1 B1a-B1 B1a-R5 72.1 26.8 10 477 12 477 26 B2a-R2 80.5 27.4 206 27 206 B2a-R3 B3a-R5 B3a-R6 81.4 32.6 24 769 27 769 B4a-R2 82.4 31.9 B5a-B1 6.70 B5a-R3 87.8 24.4 29 241 30 241 B6a-B1 * ML 21 94.2 70.0 49 B6a-R2 87.7 23.2

* Borderline CL see Atterberg wrksht

ENGINEER: K. Phan DATE: 12/18/2017 PAGE: 1

OF

1

CHEMICA	AL .	Fxpansion			
Resistivity	CI	SO ₄	Index		
hm-cm)	(ppm)	(ppm)	(EI / Potential)		
			90 / Med.		
			75 / Med		
			1071000		
0.4	111	687			

APPENDIX C

Seismic Design Parameters

ASCE 7-10 Standard (34.16185°N, 118.69162°W)

Site Class E - "Soft Clay Soil", Risk Category I/II/III

Section 11.4.1 — Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S_1). Maps in the 2010 ASCE-7 Standard are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From <u>Figure 22-1</u> ^[1]	S _s = 1.673 g
From <u>Figure 22-2</u> ^[2]	S ₁ = 0.602 g

Section 11.4.2 — Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class E, based on the site soil properties in accordance with Chapter 20.

Table 20.3–1 Site Classification

Site Class		\overline{N} or \overline{N}_{ch}	- S _u		
A. Hard Rock	>5,000 ft/s	N/A	N/A		
B. Rock	2,500 to 5,000 ft/s	N/A	N/A		
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf		
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf		
E. Soft clay soil	<600 ft/s	<15	<1,000 psf		
 Any profile with more than 10 ft of soil having the characteristics: Plasticity index PI > 20, Moisture content w ≥ 40%, and Undrained shear strength s_µ < 500 psf 					
F. Soils requiring site response analysis in accordance with Section 21.1	See	e Section 20.3.1	L		

For SI: 1ft/s = 0.3048 m/s 1lb/ft² = 0.0479 kN/m²

Section 11.4.3 — Site Coefficients and Risk-Targeted Maximum Considered Earthquake (\underline{MCE}_{R}) Spectral Response Acceleration Parameters

Site Class	Mapped MCE $_{\rm R}$ Spectral Response Acceleration Parameter at Short Period											
	S _s ≤ 0.25	$S_{s} = 0.50$	$S_{s} = 0.75$	$S_{s} = 1.00$	S _s ≥ 1.25							
А	0.8	0.8	0.8	0.8	0.8							
В	1.0	1.0	1.0	1.0	1.0							
С	1.2	1.2	1.1	1.0	1.0							
D	1.6	1.4	1.2	1.1	1.0							
E	2.5	1.7	1.2	0.9	0.9							
F		See Section 11.4.7 of ASCE 7										

Table 11.4–1: Site Coefficient F_a

Note: Use straight-line interpolation for intermediate values of S_s

For Site Class = E and S_s = 1.673 g, F_a = 0.900

Table 11.4–2: Site Coefficient F_v

Site Class	Mapped MCE $_{\rm R}$ Spectral Response Acceleration Parameter at 1–s Period							
	$S_1 \leq 0.10$	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	$S_1 \ge 0.50$			
А	0.8	0.8	0.8	0.8	0.8			
В	1.0	1.0	1.0	1.0	1.0			
С	1.7	1.6	1.5	1.4	1.3			
D	2.4	2.0	1.8	1.6	1.5			
Е	3.5	3.2	2.8	2.4	2.4			
F	See Section 11.4.7 of ASCE 7							

Note: Use straight-line interpolation for intermediate values of S₁

For Site Class = E and $S_1 = 0.602 \text{ g}$, $F_v = 2.400$

Design Maps Detailed Report

Equation (11.4–1):	$S_{MS} = F_a S_S = 0.900 \times 1.673 = 1.505 g$
Equation (11.4–2):	$S_{M1} = F_v S_1 = 2.400 \times 0.602 = 1.445 g$
Section 11.4.4 — Design Spectral Accelerat	ion Parameters
Equation (11.4–3):	$S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 1.505 = 1.004 \text{ g}$
Equation (11.4-4):	S _{D1} = ⅔ S _{M1} = ⅔ x 1.445 = 0.963 g

Section 11.4.5 — Design Response Spectrum

From <u>Figure 22-12</u>^[3]

 $T_L = 8$ seconds

Section 11.4.6 — Risk-Targeted Maximum Considered Earthquake (MCE_R) Response Spectrum

The MCE_{R} Response Spectrum is determined by multiplying the design response spectrum above by

Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From	Figure	<u>22-7</u>	[4]

PGA = 0.617

Equation (11.8–1):

 $PGA_{M} = F_{PGA}PGA = 0.900 \times 0.617 = 0.555 g$

		Table 11.8-1: S	Site Coefficient F _{PG}	βA	
Site	Маррес	MCE Geometri	c Mean Peak Gr	ound Acceleration	on, PGA
Class	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50
А	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
Е	2.5	1.7	1.2	0.9	0.9
F		See Se	ction 11.4.7 of .	ASCE 7	

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = E and PGA = 0.617 g, $F_{PGA} = 0.900$

Section 21.2.1.1 — Method 1 (from Chapter 21 – Site-Specific Ground Motion Procedures for Seismic Design)

From <u>Figure 22-17</u> ^[5]	$C_{RS} = 1.026$
From <u>Figure 22-18</u> ^[6]	$C_{R1} = 1.036$

D

D

Section 11.6 — Seismic Design Category

 $0.50g \leq S_{DS}$

1 a	able 11.0 1 Seisinic Design Category based on Short Fenod Response Acceleration Farameter						
		RISK CATEGORY					
	VALUE OF S _{DS}	I or II	III	IV			
	S _{DS} < 0.167g	А	А	А			
	$0.167g \le S_{DS} < 0.33g$	В	В	С			
	$0.33g \le S_{DS} < 0.50g$	С	С	D			

Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter

For Risk Category = I and S_{DS} = 1.004 g, Seismic Design Category = D

D

Table	11.6-	2 Seisr	nic Desiar	Category	/ Based (on 1-S	Period Re	esponse	Acceleration	Parameter
rubic	T T . O	2 30131	inc Design	, category	Duscu			coporise	/ locolor actori	i urunicter

	RISK CATEGORY					
VALUE OF S _{D1}	I or II	III	IV			
S _{D1} < 0.067g	А	A	А			
$0.067g \le S_{D1} < 0.133g$	В	В	С			
$0.133g \le S_{D1} < 0.20g$	С	С	D			
0.20g ≤ S _{D1}	D	D	D			

For Risk Category = I and S_{D1} = 0.963 g, Seismic Design Category = D

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and **F** for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = D

Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.

References

- 1. *Figure 22-1*: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf
- 2. *Figure 22-2*: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf
- 3. Figure 22-12: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf
- 4. *Figure 22-7*: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf
- 5. Figure 22-17: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf
- 6. *Figure 22-18*: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf

APPENDIX D

Amendments to Specifications

SECTION 217 - BEDDING AND BACKFILL MATERIALS

217-1 BEDDING MATERIAL.

217-1.1 General. Add the following:

Representative samples of imported material for use as bedding must be approved by the Agency.

217-2 TRENCH BACKFILL.

217-2.1 General. Add the following:

The material obtained from the open trench excavations can be used as trench backfill, subject to the provisions specified herein, and provided that all organic material, rubbish, debris, and other objectionable materials are first removed.

Materials onsite are considered clayey and are sensitive to moisture during compaction. If trench excavation materials have excessive moisture content or too much water is added to excavated soils for use as trench backfill, the Contractor may find it necessary to do one or more of the following to attain the required relative compaction:

- a) Suitably dry the wet material.
- b) Blend the wet material with dry material, such dry material being from the open trench excavations or imported backfill conforming to 217-2.3.
- c) Waste the wet material and use suitable open trench excavation material or imported backfill conforming to 217-2.3.

217-2.3 Imported Backfill. Replace the entire subsection with the following:

If imported backfill is required or if the Contractor elects to import material from a source outside the Project limits for use as backfill, said material shall be clean soil, free from organic material, trash, debris, rubbish, broken Portland cement concrete, bituminous pavement, or other objectionable substances, and shall have a minimum sand equivalent of 20.

The Contractor shall inform the Engineer of the actual street address or location from which the intended material will be furnished not less than 15 days prior to its proposed use. The Contractor will perform other testing as deemed appropriate by the Engineer. The Engineer will determine the suitability of the material for use as imported backfill.

SECTION 306 - OPEN TRENCH CONDUIT CONSTRUCTION

306-4 SHORING AND BRACING. Add the following before the first paragraph:

306-4.2 Additional Requirements.

The Kw values and soil types for use in the design of shoring of excavations are as follows:

Line	Station Limits	Kw (pcf)	Soil Types
Gates Canyon Park	15+67 – 10+00 29+45 – 20+00	27	CL, CH, SM, SC

The recommended Kw values are predicated on the water table being below the bottom of the excavation shoring. For a water table above the bottom of the excavation shoring, contact the Contractor for a revised Kw value.

306-4.6 Vertical Shores for Supporting Trench Excavations.

The parameters for determining the minimum penetration for vertical shores are as follows:

	Station Limits	Casa	Soil Parameters			Distance
Line		No	А	В	E	
		INU.	(pcf)	(psf)	(pcf)	Din
Gates Canyon Park	15+67 – 10+00	3	69	849	-	-
	29+45 – 20+00					

The recommended shoring parameters are predicated on the water table being below the bottom of the excavation shoring. For a water table above the bottom of the excavation shoring, contact the Contractor for a revised Kw value.

The soils encountered in the borings may be classified as Type B as defined in the California Code of Regulation Title 8, Division 1, Chapter 4, Subchapter 4, Article 6, Appendix A.

306-12.3.2 Compaction Requirements.

Replace the entire subsection with the following:

Mechanically compacted trench backfill shall be densified to the following minimum relative compaction:

- a) 90 percent relative compaction.
- b) 95 percent relative compaction where required by 301-1.3.

The Contractor shall perform compaction tests on mechanically compacted trench backfill as part of its Quality Control Program. The Contractor shall perform a minimum

of 1 compaction test per lift for each 300 feet of mechanically compacted trench backfill placed unless otherwise directed by the Engineer.

The Contractor will determine the maximum dry density to be used in determining relative compaction. The Contractor shall furnish representative backfill material samples for the Contractor's use. The Contractor will determine the maximum dry densities prior to the start of the Work and during the progress of the Work as deemed necessary by the Engineer.

306-12 BACKFILL.

306-12.3 Mechanically Compacted Trench Backfill.

306-12.3.1 General. Add the following after the first paragraph:

During the placement of backfill by mechanical compaction methods around utilities, the use of other than hand-held vibratory plates or tamping equipment within 1 foot of any utility.

Mechanical compaction methods of placement below 1 foot over the top of pipe conduits shall be limited to the use of hand-held vibratory plates or tamping equipment. The use of impact or roller type compaction equipment will not be allowed for placement of the backfill below 1 foot over the top of the pipe.

Mechanical compaction methods of placement shall not include a sheepsfoot wheel mounted on a backhoe within the top 3 feet of the pipe or one-half of the internal diameter of the pipe, whichever is greater.

adjusted or changed as necessary to attain the specified relative compaction. Approval of equipment, thickness of layers, moisture content and compaction effort shall not be deemed to relieve the Contractor of the responsibility for attaining the specified relative compaction. The Contractor, in planning its work, shall allow sufficient time to perform the work connected with the test sections, and for the Agency to perform the necessary testing for determining compliance.

Each lift shall be evenly spread, moistened and worked by disc harrowing or other means approved by the Engineer, and then mechanically compacted until the specified relative compaction has been attained.

306-12.3.2 Compaction Requirements. Replace the entire subsection with the following:

Mechanically compacted trench backfill shall be densified to the following minimum relative compaction:

- a) 90 percent relative compaction.
- **b)** 95 percent relative compaction where required by 301-1.3.

306-12.4 Jetted Trench Backfill. 306-12.4.1 General.

Add the following as the third sentence of the first paragraph:

Jetting will not be permitted